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Abstract. We study the surface adsorption of a flexible self-avoiding polymer chain on a 
family of Sierpinski gasket-type fractals using the real space renormalization group 
technique. The members of this family are characterized by an integer scale factor b which 
runs from 2 to m . The Hausdorff dimension of these fractals tends to 2 from below as 
b - t m .  We calculate the crossover exponent r$ for the desorption transition exactly for 
b = 2 t o 6 .  Forb-m, weusefinitesizescalingarguments toshowthatr$-1/4. 

1. Introduction 

Critical phenomena at surfaces have been extensively studied in recent years in the 
framework of equilibrium phase transition [l-61. These studies include several 
important physical problems such as wetting, surface reconstruction and polymer 
adsorption [7-81. Here we are concerned with the phenomena of polymer adsorption 
on a rigid. impenetrable substrate. This problem has been the focus of much attention 
in recent years because of its technological importance in the stabilization of colloidal 
dispersions used in paints, pharmaceuticals and foodstuffs, in lubrication, adhesion 
and membrane- phenomena and in the development of artificial organs. While in 
practical applications one does not usually operate in the vicinity of the critical point, 
it is very desirable to understand how changes in the attractive interaction strength at 
the surface affect the adsorption behaviour of the polymer for aU values of the 
interaction strength. 

I n  most of the theoretical work reported in the literature, consideration is given to 
adsorption of an isolated long polymer chain in good solvent on an attractive wall [5- 
81. For this case there is an unbinding temperature analogous to a tricritical point, and 
in its vicinity a crossover regime is observed, where a simple scaling law holds [4]. 
There is a formal equivalence between the problem of polymer adsorption on a 
surface and the problem of critical phenomena in the n-vector model of a magnet with 
a free surface which has been used in scaling analysis [9]. Both the surface and bulk 
critical exponents have been calculated using renormalization group methods 15, 10, 
111, exact enumeration methods and Monte Carlo simulations [U, 61. For a two- 
dimensional system exact values of the exponents have been found by using conformal 
invariance [13, 141. 
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For a space of fractal dimension dF and an adsorbing surface of dimension ds 
Bouchaud and Vannimenus [l l]  (hereinafter referred to as BV) have shown using 
scaling analysis that the crossover exponent q5 has lower and upper bounds given as 

1 - (dF- dJVSq4 SdJdF. (1.1) 

Here Y is the bulk radius of gyration exponent for a polymer chain in a good solvent 
and the exponent @ governs the region where critical scaling holds. At the critical 
point the number of monomers in direct contact with the surface vanes as N’ where N 
is the total number of monomers. For the proximal exponent in, which governs the 
variation of monomer density in the neighbourhood of the surface in the critical 
region, they found 

m=dF-ds+ (q4 - 1)h. (1.2) 

Since for a regular lattice d,=dF-l ,  equation (1.2) reduces to an expression 
conjectured by de Gennes and Pincus [15]. 

Many attempts have been made in recent years to calculate the values of q4 and m 
on Euclidean lattices using real space renormalization methods [lo, 11, U]. However, 
as a rule, these models are not solvable analytically and numerical methods are often 
quite insufficient in the study of critical behaviours. The value of @ can, however, be 
calculated exactly for finitely ramified fractals using the RSRG method. This has been 
shown recently by BV for Sierpinski gaskets having rescaling parameter b=2 and 
embedded in two and three dimensions. An adsorption transition was found to take 
place when one of the boundaries of the fractal lattices was made attractive. Note that 
€or a 3~ Sierpinski gasket the adsorbing surface itself is a ZD gasket with d, = In 31111 2. 
Modelling the polymer on this surface by a trail silhouette, Orlandini et a1 [I61 have 
recently shown the existence of two transitions in the adsorbed region, the first one, 
from linear to branched polymer behaviour, is followed by a further collapse into 
compact globule. 

In this article we consider a family of Sierpinski-type fractals (or equivalently a 
Given-Mandelbrot family of fractals [17]) embedded in two dimensiqns-and charac- 
terized by the rescaling parameter b which runs from 2 to m. The fractal dimension dF 
of members of this family is easily seen to be 

dF = In b 

As b is increased both the fractal and the spectral d dimensions of the fractal increase 
monotonically and tend towards 2 from below. However, dimension d, of the 
adsorbing surface remains one in all cases. 

The bulk critical exponents of self-avoiding waks (SAWS) which simulate a long 
polymer chain in a good solvent have been calculated by Elezovic et a1 [IS] for the 
family of Sierpinsi type fractals with 2SbS8 .  In a previous paper [I91 the 
Given-Mandelbrot family of fractals was used to show that the bulk critical exponents 
of SAWS for large b can be expressed in a systematic expansion. These two families of 
fractals have same recursive construction, and hence all the critical properties. In this 
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Figure 1. The two surface partition functions (S and C) and the bulk generating hmction 
(B) for the polymers on the Sierpinski gasket. 

paper we use the finite size scaling theory to determine the behaviour of the crossover 
exponent q4 for large b. 

Study of the critical behaviour of a polymer chain interacting with a surface on 
these fractal lattices is of importrtnce for several reasons: first, one can find exact 
values of q4 as b is vaned. By finding out how the crossover exponent changes on 
systematically changing the properties of the fractal, one can understand better how 
geometry affects tricritical behaviour. Further, one is often interested in the study of 
polymers in the presence of disorder in the surrounding medium. In many cases the 
disordered medium may be modelled as a random fractal, and the study of polymer 
adsorption on regular fractals is a prerequisite for such studies. The behaviour of q4 as 
b + m can also be checked to see if it tends to its two-dimensional value i. 

The paper is organized as follows. In section 2 we describe the real space 
renormalization group method (RSRG) to calculate the crossover exponent for self- 
avoiding walks interacting with a surface of a fractal lattice. We show that a model 
containing three parameters is adequate to describe the adsorbed phase and the 
unbinding transition of the SAWS. Section 3 is devoted to finite size scaling theory to 
calculate the values of the crossover exponent as a function of b, as b+ m . The paper 
ends with a brief discussion given in section 4. 

2. Real space renormalization group calculation of crossover exponent 4 

To perform an RSRG calculation on a polymer chain interacting with a surface, we 
study how the coupling constants describing a SAW change upon repeated length 
rescaling of the system. When these quantities remain invariant, the chain is ‘self- 
similar’ on all length scales and this is a ‘fixed-point’ of the rescaling transformation. 
In principle, an infinite number of parameters are required to describe exactly the 
chain and its behaviour under rescaling. It is clearly not possible to deal with this 
infinite parameter space and somewhere there must be truncation. For these fractals 
the bulk critical exponents are calculated using on:y one parameter which represents 
fugacity per monomer of the polymer chain [18-221. Here, following BV, we introduce 
two more parameters denoting interaction of a monomer in the surface layer and in 
the adjacent one [ll]. 

A walk is called a surface walk (and assigned configuration S) when it enters 
through one corner of the surface and leaves from the other as shown in figure 1. A 
bulk walk represented by B has no step on the surface or on the bonds connecting the 
surface with the bulk. A walk which enters through one corner of the surface and ends 
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up in the bulk is assigned configuration C. The generating functions for these walks 
can be written as 

and 

C,(x, w ,  t) = E C,(N, M ,  R ) x % ~ ~ ~ .  

As has already been indicated, x is a weight factor (fugacity) associated with each 
visited site of the lattice. B,(n) is the number of distinct configuration of SAWS which 
join two vertices of the rth order gasket in the bulk and Nis the number of sites visited 
by the SAW. Here M and R represent, respectively, the number of visited sites of the 
lattice which lie on the surface and on a layer adjacent to the surface. The summations 
in (2.1)-(2.3) are over repeated indices and S,(N, M ,  R) and C,(N, M ,  R) represent 
number of configurations of respective walks of the rth order gasket. Note that apart 
from the fugacity x ,  the other two parameters w = exp( - EJT)  and t = exp( - E J T )  
chosen here correspond to surface energy E, denoting the interaction of a monomer 
(which is supposed to lie on a lattice site) with the surface, and E. the interaction of a 
monomer with the adjacent layer. 

For a ZD Sierpinski gasket with b =2, the restricted partition functions are shown in 
figure 1. For this case the algebraic recursion relations are simple and can be written 
simply by inspection (figure 2). Thus 

B,+1=B*+B3 (2.4) 

S,,, = S2+ BCZ (2.5) 

A=A+A 
Sr+l 5: C? 5, 

Figure2. The recursion relations for the two surface functions (C and S) given by 
equations (2.5)-(2.6) for a Sierpinski-type fractal with b=2.  
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A 

Fig". Flow diagram in parameter space for a Sierpinski gasket with rescaling para- 
meter b =2. The k e d  points discussed in the text are shown. 

and 

C,+,= CE+SCE. (2.6) 

For notational simplification we drop the suffix r from the right-hand side of recursion 
relations. Note that (2.4) corresponds to the polymer chain in the bulk and has been 
studied earlier [20]. It is decoupled from the surface and it remains so under iteration. 
The starting weight of the functions of (2.4)-(2.6) are chosen to be 

BQ=xZ (2.7) 

S 0 = o 2 x ~  (2.8) 

CO = tOJx2. (2.9) 

In writing the above equations weights x ,  wx ad a were assiged to each visited site 
in the bulk, surface and layer adjacent to the surface, repectively. More general or 
complicated initial conditions could be considered by allowing long-range interaction 
with the wall but it would not change the qualitative behaviour of the phase diagram. 
Equations (2.4)-(2.6) have been solved and the general tlow diagram is given in figure 
3. Three non-trivial fixed points are found, whose features are discussed below: 

(i) The fixed point ( E * ,  S", C*) = (0.61803,0,0) corresponds to the bulk state, i.e. 
disordered state, of the chain with v=O.7986 as obtained earlier. (For 
x =xc(w) =0.78615 the fixed point is reached for all OJ <o,(t). Note that U&) is a 
function of t ;  for t=0.5 the value of w,(O.5)= 1.1118. 

(ii) The fixed point ( B * , S * ,  C*)=(O, 1,0) isreachedforallw>w,(t) andx<x,(o) .  
This represents the adsorbed state of the polymer chain with Y = 1. It should be 
noted that surface dimension of this fractal family is one and hence the value of v 
obtained is consistent with earlier prediction. 
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(iii) The fixed point (B*,  S*, C*)=(O.61803, 0.61803, 0.61803) is obtained for 
O=UJ&). The linearization of equations (2.4)-(2.6) around these fixed points 
yields two eigenvalues greater than one, i.e. 

I,= 1.6709 

a, = 2.3819. 

We identify this as a tricritical point. The crossover exponent is found to be 

In I ,  
In I ,  $=-- =0.5915. 

At the point of adsorption transition the free energy per monomer is given as [21] 

f ( T )  = Th x,= (Tc- T)*-.+ regular part. 

The first term on the FSIS of the above equation expresses the leading singular 
behaviour of the polymer free-energy density. The 'specific heat' critical exponent a at 
the tricritical point is related to q5 as [21] 

a = 2~- U@. 

For b =2, the value of a is found to be 0.3094. 
It is straightforward to extend this method to other lattices of this family. 

However, as the value of b increases the number of possible configurations of 
different walks increase rapidly. Therefore, the extension of this method to much 
larger values of b appears difficult as the computer time needed to generate the exact 
renormalization equation by direct enumeration increases as exp (b'). We summarize 
results for 2 s  b <6 in Table 1, in which are listed the fixed point corresponding to the 
tricritical point of the system, the values of the two eigenvalues which are greater than 
one and values of the exponents Y, $ and a. Note that the values of Y reported here 
have been obtained earlier by Elezovic et a1 [18]. The value of q5 is found to decrease 
as b increases. This can be attributed to the fact that dF increases with b, making 
relatively more bonds available in the bulk for the polymer to spread than the surface. 
At b = 6 the value of q5 becomes lower than that of a two-dimensional system and a 
changes sign. 

Numerical analysis of the results for I b  and Is given in Table 1 suggests the 
foIlowing relations between these quantities: 

I ,  = b"% (2.9) 

I ,  = b[ l+I l -ddYl lv  (2.10) 

and 

Table 1. 

2 1.5849 0.6180 2.3819 1.6709 0.7986 0.5915 0.3094 
3 1.6309 0.5511 3.9919 2.1628 0.7936 0.5573 0.2056 
4 1.6609 0.5063 5.8029 2.5418 0.7884 0.5305 0.1151 
5 1.6826 0.4745 7.7898 2.8426 0.7840 0.5089 0.0350 
6 1.6994 0.4507 9.9360 3.0864 0.7803 0,4908 -0.0374 
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Fi-4. Critical fugacity x as a funclion'of'the surface interaction parameter o= 
exp(- E,Ik,T) for several values of t=exp(-E,lk,T) for the fractal lattice b=2. The 
tricntical points of adsorption are shown by full circles. 

where v = s  is the exactly known correlation length exponent for b-m (or d,=2). 
From (2.9) we find 

v(b)=Inb/lnA,= (2.11) 

This simple looking relation gives values of v(b) which are in very good agreement 
with those found exactly using the RSRG method [18] for 2 s  b s  8 and the Monte Carlo 
RG method for 2 s  bS80 [24]. For example, the values of v(b) given in [18] and [24] 
for b=2,20,50 and 80 are, respectively, 0.7986,0.7560.0.7399 and 0.7340, whereas 
the values found from equation (2.11) are 0.7943, 0.7485, 0.7396 and 0.7363. 
Equation (2.11) cannot, however, be valid for b+m as its predictions contradict the 
results of finite-size scaling [19], a monotonic decrease in the value of v(b) as b is 
increased. From (2.9) and (2.10) we obtain 

q5(b)=InAs/lnA,=[1 +(1 -dE)v] f iF/v .  (2.12) 

This predicts the value of q5 which lies within the bounds given by (1.1). Equation 
(2.12) is expected to be valid for moderately large values of 6. 

In figure 4 the phase diagram in parameters x and w for a few fixed values o f t  is 
plotted. Note that for each t we have a value of w = w,(t) such that for w > o.(t) an 
adsorbed phase is found to exist for xCX, .  The w<w,(t) and n=x, part of the curve 
represents the desorbed phase and the point w = o,(t) and n=x ,  is a tricritical point. 
As the value of t increases, wc(t) decreases. This is shown in figure 5 in which w, is 
plotted as a function of t for b = 2.  It thus appears that in order to have an unbinding 
transition either E, or E, must be repulsive. If both E, and E, are repulsive, polymer 
will not be adsorbed and similarly a desorbed phase will not be found to exist if both 
E, and E, are attractive. When E,=O (i.e. t =  1) the tricritical point is found at w = 1 
(Es=O). These features of the phase diagram exist for all lattices of this family. 
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3. Determination of 

Consider a large triangle of base b and assume that its one edge (say base) has bond 
strength E, and the bond connecting the edge (or surface) to the bulk has iteraction 
zero, i.e. E,= 0, t = 1. As has been shown in the previous section, for this case E, = 0 is 
the tricritical point. Note that this corresponds to an unperturbed state. Analogous to 
the scaling ansatz for bulk [19], we assume the following scaling behaviour of the 
surface: 

for large b 

1 
S x~ g[&b"', E,b "*I (3.1) 

where g is a scaling function of two arguments. Here exp(&)= exp(d)= B'/B*(m),  
where the superscript r stands for order of iteration and B*(- )  is the bulk critical 
fixed point for b = m . To simplify notation we shall, however, drop the superscript r in 
the remainder of the article. 

By definition Eb "' and E,bl'"z are the combination that are unchanged under the 
renormalization transformation. Thus for an infinite base 

b -+ blA E + A l / V  and E,-+EsAL"z. 

Equation (3.1) can be rewritten as 

K 
S=--;exp[f(eb"", b E,b""2)] ( 3 4  

which defines the function f. Here K is a constant. The exponents x ,  Y and v2 are 

0.0 1 I I I I I I I 
as0 0.95 100 1.05 1.10 1.15 7.20 7.25 

w 

Figure 5. Variation off as a function of UJ. for b=2.  
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known from conformal invariance or by coulomb gas methods. Near the fixed point 
E,=O, we obtain, using Taylor expansion for f 

f (eb I'", E,b ""2) = f (sb I/", 0)  + E,b I'"2f'(&b1'". 0 )  + . . . . (3.3) 
Now at large b ,  one has 

dS' I 

where S'=S ,+ , ,  S=s, and 1, is the largest eigenvalue of 

asi a s  

This is in accordance with the results of the previous section where, even for small 
values of b ,  the off-diagonal elements were found to be small. 

The average number of contacts of the random self-avoiding walk with the surface 
is given as 

S E  I 
S' ds S.=C.=8. 

&= b""T(eb"', 0 ) .  (3.4) 

at E, = 0. Now using the definition of S and f we find 

For self-avoiding walks at large b Dhar [I91 has shown that &*b'/"= (a In 6)"" and that 
there are roughly b"" (In b)2y-1'z", number of steps. As these are dense SAWS, they fill 
the plane with roughly uniform density. So the number of contacts on the edge is 

average density x edge length =kzb"Y+'-dF(ln b)"-'"" (3.5) 

as= kJ, l / * + l - d p ( l n  b)2Y-I"Y. (3.6) 

where kz is a constant, which implies that 

This leads to the following expression for @(b) 

+terms of order llln b @ ( b ) = G = l + v ( l - d F )  1 - -  - (3.7) 
In As 2v-1  Inlnb [ 2 Inb 

From this equation we note that for b+ m 

@ = 1 + ~ ( 1 -  dF) =0.25 (3.8) 
where Y = $. Since In In blln b = (2-  d(b)) ,  the first correction to @ term due to finite b 
is proportional to (2 -  d(b)). A similar relation has also been found for bulk v(b)  and 

Since (2v-1) /2  is positive for v = $ ,  the first correction term'in (3.7) is negative 
which, when multiplied by ( l - d F ) v ,  makes a positive contribution to @(b).  This 
implies that @(b) approaches the $ value monotonically as b is increased. In figure 6 
@(b)  is plotted as a function of l / ln  b .  We do not plot @(b) against In lnlln b ,  as this 

m ~ 9 1 .  
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0.201 I I I I 
0.0 am 0.80 1.20 1.60 

4 6 -  
Figu-6. Variation of crossover exponent @ as a function of (In b)-'. Full circles denote 
the exact values given in Table 1 and the dashed line represents the interpolated region. 
We have used @(b) = O . Z  at b= m in the interpolation. Open circles denote the values 
obtained by equation (2.12). 

involves an additional free parameter. In this plot we have taken @(b) for 2 s  b < 6 the 
exact values given in Table 1 (shown in the figure by full circles) and for b = m the 
value given by (3.8). The dashed line shows the interpolated region obtained by using 
spline fitting with tension factor two using software GRAPHER (Version 1.75, 1988 
Developed by Golden Software, Inc.). The values of @(b) obtained by (2.12) are also 
shown in the figure by open circles. Equation (2.12) is seen to yield reasonable values 
of @(b) for a wide range of b. 

Implicit in the analysis given above is that the polymer density at the tricritical 
point is isotropic. This is justified from the fact that the proximal exponent m found 
from (1.2) using the values of @ and Y given in Table 1 is nearly equal to zero 
particularly for large b. We may also note that the transverse correlation length tL(xc)  
associated to C, and the parallel one $,(xc) associated to S are equal confirming the 
isotropic distribution of the polymer chain. 

4. Discussion 

The problem of adsorption of a polymer chain on a boundary of a fractal lattice 
considered here differs from that of a regular lattice. In the latter case, there is an 
entropy loss per monomer on the surface because it is impenetrable: once a monomer 
lies on the surface, the following segment has a restricted orientational choice. This 
introduces anisotropy in the distribution of monomers and in the correlation lengths 
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corresponding to parallel and perpendicular distributions. In the case of a fractal, on 
the other hand, the impenetrable surfaces exist in the bulk lattice because of the 
construction and therefore, the presence of interaction on a surface does not entail 
much additional loss of conformational entropy to the polymer. This situation may be 
compared to the one existing in the case of a penetrable surface of a regular lattice in 
which both correlation lengths (paralfel and perpendicular to the surface) are equal. 
Enumeration suggests that in the case of penetrable surface = 1 - v [U] which is in 
agreement with the result reported above for b+ m . Thus, in spite of the fact that 
even forb + m , when both the spectral ind Hausdorff dimension of the lattice tend to 
2, the critical exponent q4 is not equal to the two-dimensional value =+should not be 
a surprise. 

In the finite size scaling theory given in section 3, one is concemed with the change 
in the renomalization equation as scale factor is changed. This differs from the usual 
case, where the renomalization equations are unchanged as the lengths are rescaled 
but the coupling constants are chahged so that correlation functions of a Hamiltonian 
at a length scale L, are related to those of the transformed Hamiltonian at length scale 
Llb. In the treatment given in section 3 one determines how the recursion equations 
for the 6-fractal are related to those of (say) %-fractal. This analysis clearly indicates 
that the relation @ = l - v  is satisfied only for a lattice for which the rescaling 
parameter b approaches infinity. For finite b, corrections expressed in powers of 
8=2-d(b) (which measures the difference of the spectral dimension of the lattice 
from 2) arise. 
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Appendix 1 

Here we report the recursion relations for b = 3, 4, 5 and 6 of ZD Sierpenski type 
fractals. 

b=3 

B,+i= B3+3B4+B5+2B6  
S,+,=S3+2SBC2+2SCZB3+C2B2+CZB3 

C,+1=2SCBZ+SZCB2+SZCB3+ CBz+ CB3+ C3B3 

b = 4  

B4+ 6Bs + 6B6 + 9B7 + 9B8+ 9B9+4B'' 

Sr+1=~'[B3+3B4+ BS+2B6] + C4[B2+2B4+2B6] 

+ S[Cz(2BZ+2B3+ 4B'+ 4B5 + 2B6] 
+SZ[C2(3B+4B3+B4+7Bs+2B6! +S4 
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C,,,= C[B3+3B4+ B5+2B6] + C3[3B4+2B5+3B6] 

+S[C(3B3+2B4+ BS+ B6)+ C3(2B4+4Bs+2B6)] 

+S2C[3B3+2B4+ B5+ B'] 

+ S3C[B3 + 3B4 + B5 +2B6] 

b=5 

B,,, = BS+ 10B6+20B7+ 30BZ + 54B9+ 68B1'+ 98B"+ 94B12+ 86B" + 38B" 
+16B' 

SF+,= CZ[B4+ 6B5 + 6B6+ 9B7+9B8+ 9B9+4B")] 

+ C4[2B3 +2B4+ 6BS + 6B6+ 10B7+ 14B8+ 14B9+ 6B1'] 

+ S[C2(2B3 + 6B4+ 8B5 + 20B6 + 14B7+ 24B8 + 8B9 + 6B1']) 

+C4(3BZ+8B4+2Bs+17B6+8B7+32B8+l2B9+8B1')] 
+ SZCz[3B2+3BZ + 8B4+ 9BS + 23B6+ 26B7 +26B8+ 12B9 + 6BL0] 

+S3C2[4B + 6B3 + 2B4+ 14B5 + 12B6+ 34B7+ 22B8 + 14B9+ 8B'q 

+s5 

C,,, = C[B4+6B5 + 6B6 + 9B7+ 9B8 + 9B9 + 4B10] 
+C3[6BS+9B6+ 18B7+20B8+22B9+7B10] 

+ C5[B6+3B7+3B8+6B9+2B10] 

+ S[C(4B4+8Bs+5B6+ 11B7+ 6B8+9B9+ B") 

+ C3(SBs+ 15Bs+26B7+35B8+26B9+7B1')] 

+ Sz[C(6B4+ 6BS+ 8B6+ 6B7+ 6B8+ 4B9+ 4B") 

+C3(3BS+15B6+14B7+28B8+15B9+1OB1')] 

+S3C[4B4+ 8B5+ 56B6+ 11B7 + 6B8+9B9+ B'O] 

+S4C[B4+6Bs+6B6+9B7+9B8+9B9+4B'Oj 

b=6 

B,,,= B6+ 15B'+ 50B8 +90B9 +201B" +327B" +604B1*+898Bu + 13928" 

+ 1687B" + 1985B16+ 1720B "+ 1371B 757B l9 + 334Bm+ 68BZ1 

S,+,= C2(B5+ 10B6+ 20B7+ 30B8+ 54B9 + 68B'" + 98B1'+ 948"+ 86B1'+ 38BI4 

+ 16B") 

+ C4(3B4+ 8B5+ 15B6+34B7 + 42B8+ 102B9+ 127B'0+208B11 

+ 206B"+ 196B1'+90B 14+30B's) 

+ C6(B3 + 4Bs + B6 + 10B7 + 6B8 + 27B9 + 25B lo + 59B"+ 40B" 

+ 48B" f 2 2 B  14+ 8B") 

+ S[CZ(2Bd + 12B5 + 20B6 + 58B7 + 74B8 + 138B9+ 154B1'+ 212B 
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+ 154B1Z+134B'3+54B10+18B'~ 
+ C4(6B3 + 6B'+ 24B5+ 28B6 +76B7+ 100B8+224B9+304B1' 

+ U B I 1  + 406B" + 344B" + 156B" + 36B ")I 
+S2[C2(3B3+9B4+ 15BS+39B6+62B7+ 145B8+ 171B9+271B1' 

+ 22SB11 + 228B12 + 136BI3 + 74B" + 22B") 

+ C4(6BZ+ 18B4+ 6Bs+ 50B6+40B7+ 148B8+ 164B9 + 396B" 

+ 346B + 412B "+ 260B l3 + 146B l4 + 36B ")I 
+ S3Cz(4BZ + 4B3 + 12B4 + 14BS + 44B6 + 628' + 154B8 + 214B9 

+292B1' +274B1'+U2B1'+ 164B13+ 82B" +24B1') 
+ S4C2(5B + 8B3+ 3B4+21BS + 22B6+ 69B7+ 96B8+224B9+ 240B" 

+275B1' +229B1'+ 159BI3 + lO6B" +24B1') +S6 

and 

C,+,= C ( B S +  10B6+20B7+30B8+54B9+ 68B10+98B"+94B1Z+ 86B13+38B14 

+ 16B") 

+ C3(10B6+ 28B7 + 58B8+ 113B9+ 185B1'+ 264BL1+ 29SB1'+ 239BI3 

+ 115BI4 + 37B") 

+ Cs(5B7 + 16B8 + 36B9 + 76B" + llOB" + 148B" + 1~.9B'~ + 74B'" 

+ 17B") 

+S[C(5B5+20B6+ 21B7+47B8+53B9+ 89B1'+86B" 

+ 103B" + 57BI3 + 27BI4 + 7B l') 

+ C3(20B6 + 44B7 + 116B8+ 198B9 +356B1' + 448B" 
+ 514B'' + 314BI3 + 172B"+ 35B") 

+ CS(3B7+ 22B8+ 34B9+ 81B1'+ 108B" + 165B"+ 

+ 14B")l 

+SZIC(lOBS+ 19B6+ %E7+ 40B8 +51B9+ 63B'' +71B" + 70B" 
+59B13 + 24B" + 1lB") 

+ C3(15B6 + 57B7+ 99B8 + 242B9+ 325B"+ 511B"+ 458B" 

+370BL3+146B14+4SB1s)] 

+S3[C[10BS + 19B6 +2SB7 + 40B8 +51B9 + 63B" + 71B" + 70B" 

+ 86B" 

+ 59BI3 + 24B1"+ llB") 

+ C3(4B6+ 36B7+ 66B8+ 127B9+ 204B1'+ 2S6B1'+ 312B" 

+ 250BU + 138B "+ 38B1')] 

+ S4C(5BS + 20B6+ 21B7+ 47B8+ 53B9+ 89B1'+ S6B" + 103B" 
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+ 57B"+ 27B14+7B") 

+S'C(B5+ 10B6+ 20B'+30B8+54B9+68B'o 

+ 98B" + 94B" 

+ 86B') + 38B"+ 168'') 

where for notational simplification the subscript r has been dropped from the right- 
hand side. 
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